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Main question

How can we analyze non-stationary and nonlinear
time series?
• Stationary time series: ensemble means are time-shift invariant

• Weakly stationary: true for 1st and 2nd order means

• A non-stationary example is a transient signal like a delta function

• Nonlinear time series: generated by an underlying dynamical
system obeying nonlinear equations
• Often linear approximations can be made -> complex time series

can be decomposed into a superposition of simple solutions (e.g.
sinusoidal waves)

What do we want to gain from the analysis?
• Determine characteristic time / frequency scales for the energy



Neuroscience is filled with complex time series
• Local field potentials and electroencephalograms

• Complex natural stimuli

Motivation

LFP from 
Cat K28

Mouse pup call



Existing methods

Dominant approach: decomposition of the time
series into component basis functions satisfying
• (a) Completeness of the basis

• (b) Orthogonality of the basis

Examples:
• Fourier methods

• Wavelet analysis

• Principal component analysis

• Etc. . . .



Fourier methods

Method
• Decompose time series, f(t), into global sinusoidal components

of fixed amplitude, aj ,(e.g. FFT) -> complete & orthogonal basis

Interpretation
• The spectral amplitudes , aj, yield the energy contributed by a

sinusoid at frequency ωj that spans the whole time series

Most useful when . . . .
• The underlying process is linear so that the superposition of

sinusoidal solutions makes physical sense

• The time series is stationary, since the aj are constant
• If not, the spectral energy spreads, often requiring carefully-

phased, global (possibly harmonic) sinusoidal components to
reconstruct the non-uniform time series

• The Fourier spectrum looses track of time location for events -> not
a local description



If piece-wise stationarity can be assumed
• Construct spectrogram by sliding a window across the time-

series and performing Fourier analysis

• Constrained by a time-frequency tradeoff -> often don’t capture the
temporal events at the desired frequency resolution -> still nonlocal

Fourier methods



Fourier methods

But even if weak stationarity holds, Fourier methods
may not give an efficient (adaptive) representation
• Single decaying sinusoid is compactly described as:

But Fourier
representation is
spread over
frequency

Note this is not stationary
if it starts abruptly at t=0



Wavelet analysis

Method
• Decompose time series, X(t), into local, time-dilated and time-

translated wavelet components, ψ -> complete (not necessarily
orthogonal) basis

Interpretation
• W represents the energy in X of temporal scale a at t=b

Attractive because. . . .
• Local, although higher frequencies are more localized

• Uniform temporal resolution for all frequency scales
• But, resolution is limited by the basic wavelet

• Useful for characterizing gradual frequency changes

But. . . .
• Non-adaptive -- same basic wavelet is used for all data



Principal component analysis

Method
• Decompose time series, z(t), into eigenbases of the covariance

matrix -> complete, orthogonal basis

Interpretation
• Modes fj often interpreted as “directions” of independent

variations, but they may not be physical modes

Attractive because. . . .
• Adaptive -- derived from the data

But. . . .
• Distribution of eigenvalues do not yield characteristic time or

frequency scales
• Eigenmodes themselves need not be linear or stationary (and

therefore are still not easily analyzed by spectral methods)



What would we like?

A decomposition that is
• (a) Complete

• (b) Orthogonal

• (c) Local

• (d) Adaptive

From which local time / frequency scales are
extracted

How do we define local time / frequency scales?
• Instantaneous frequency



Instantaneous vs. global frequency

Global frequency = average frequency derived by
weighting by the Fourier power spectrum, |S(ωωωω)|2

Instantaneous frequency of a signal, X(t)
• Form an analytic signal, Z(t), from X(t)

• Take the Hilbert transform of X(t)

– Physical interpretation: Y(t) is the best local fit (since the 1/t
emphasizes local properties) of a trig function to X(t)

– Polar coordinate description for Z(t) allows the phase θ(t) to be defined

• Z(t) has the same positive frequency spectrum as X(t), but zero
negative frequency spectrum

• Define instantaneous frequency as the rate of phase change



Hilbert spectrum of the LFP

Not so useful. . . .



Valid description?

When is such a description valid?
• If this concept is applied blindly to any analytic function, one

may run into one of 4 paradoxes (L. Cohen)
1) “The instantaneous frequency may not be one of the frequencies

in the (Fourier) spectrum.”
2) “If we have a line spectrum consisting of only a few sharp

frequencies, then the instantaneous frequency may be continuous
and range over an infinite number of values.”

3) “Although the spectrum of the analytic signal is zero for negative
frequencies, the instantaneous frequency may be negative.”

4) “For a bandlimited signal the instantaneous frequency may go
outside the band.”

• Instead, the definition implies that at a given time, there is only
a SINGLE frequency -> “mono-component”
• Perhaps by restricting to “narrow-bandwidth” signals, but attempts

to define this are vague, and “global”
• Global restrictions have been specified which allow for a

meaningful instantaneous frequency: “real part of Fourier transform
has to have only positive frequency”



A simple example

What signal
properties cause
difficulties in the
instantaneous
frequency?
Consider. . . .
X(t) = α + sin t

Y(t) = cos t

Z(t) = a + sin t + i cos t

For. . . .
α = 0, const. freq, OK

α < 1, dc., asym. env.

α > 1, neg. freq, riding
wave

Bad
signals



Goals of the new method

1) Decompose time series into superposition of
components with well defined instantaneous
frequency -> Intrinsic Mode Functions (IMF)
• Components should (approximately) obey earlier requirements

of completeness, orthogonality, locality and adaptiveness.

• To get an IMF, need to
• LOCALLY eliminate riding waves

• LOCALLY eliminate asymmetries (defined by envelope of extrema)

2) Construct the Hilbert spectrum of each IMF,
representing it in the amplitude - instantaneous
frequency - time plane



Properties of IMF’s

(1) corresponds loosely to finding “narrow-band”
signals, or eliminating “riding-waves”

(2) ensures that the instantaneous frequency will
not have fluctuations arising from an asymmetric
wave forms

Both imply finding modes with zero LOCAL mean



Finding IMFs: Emperical Mode Decomposition

Most data are not naturally IMF’s

What are we looking for?

Assumptions
1) At least two extrema -- one max, one min
2) Characteristic time scale defined by the time between extrema

3) If no extrema, differentiation will reveal extrema (integrate at
end)



The sifting process

Procedure
• Identify the extrema (both maxima and minima) of the data, X(t)

• Generate the envelope by connecting maxima points with a
cubic spline, and minima points with a cubic spline

• Determine the LOCAL mean, m1, by averaging the envelope

• Since IMF should have zero local mean, subtract out the mean
from the data

• h1 is probably not an IMF; repeat as necessary until it is

• -> End up with an IMF







Finding all the IMFs

Procedure
• Once the first set of “siftings” results in an IMF, define

• This 1st component contains the finest temporal scale in the signal

• Generate the residue, r1, of the data by subtracting out c1

• The residue now contains information about longer periods ->
resift to find additional components

• Form the superposition of the components to reconstruct the
data

• Linear superposition of modes
• Efficient/adaptive (based on data) representation



Some details. . . .

When does the sifting stop?

• In practice, this criterion seems to “work”

• Drawback: ad hoc criterion

Technical problems
• Cubic spline fitting is computationally intensive and creates

distortions near the end points



Example of a turbulence data set



Decomposition

Total of 9 components
• Efficient representation

(relative to Fourier) of a
turbulence data set

• Never have oscillations of
the same scale at the
same time in different
modes



Satisfying our criteria

4) Adaptive
• By construction, since based on the data

3) Local
• By construction, since local properties of the oscillatory modes

are emphasized

1) Completeness
• Complete for a given data set, as established by Eqn. (5.8)
• Check numerically by reconstructing the data (see next page)

2) Orthogonality
• Not guaranteed theoretically, although by construction, the

components should be locally orthogonal

• Orthogonality prevents energy leakage between modes
• Check a posteriori with the index of orthogonality (IO)





Visualizing the data

Hilbert spectrum
• In terms of the IMFs, the time series can now be written as

• This is a generalization of the Fourier decomposition, allowing for
time varying amplitudes and frequencies, thus simplifying the
description of non-stationary data

• The spectrum describes the joint distribution of the amplitude
and frequency content of the signal as a function of time
• Often presented as contour or color plots of the amplitude (or

energy) over the time-frequency plane
• Time resolution can be as precise as the sampling period

• Frequency resolution is arbitrary (up to the Nyquist frequency)
– Lowest extractable frequency (best resolution) = 1 / T Hz, T = duration
– Highest extractable frequency = 1 / (n dt) Hz, dt = sample period, n =

minimum number of pts to accurately define frequency = 5
– -> Max number of bins = T / (n dt)



Hilbert spectrum



Morlet wavelet spectrum



Smoothed Hilbert spectrum



Quantifying stationarity

Simple idea: Stationary processes should have
horizontal contours in the Hilbert spectrum
• Define the marginal Hilbert spectrum by integrating over time:

• Define the mean marginal spectrum as

• Degree of stationarity over the whole data set is then

• The closer to zero this is, the more stationary the system



Calibrating the technique: single cycle



Calibrating the technique: Stokes wave







Intrawave frequency modulation

Interpretation
• Intrawave frequency modulation (from 0.02 to 0.04 Hz) vs.

harmonic distortion: is it a more physical interpretation?
• Harmonic components often arise because a linear system is used

to approximate the nonlinear one (e.g. perturbation expansion into
an infinite series of Fourier modes)

• Intrawave frequency modulation produces waves with similar
distortion as the Stokes wave



Example of amplitude modulation









Neuroscience examples: LFP

Original LFP



If piece-wise stationarity can be assumed
• Construct spectrogram by sliding a window across the time-

series and performing Fourier analysis

• Constrained by a time-frequency tradeoff -> often don’t capture the
temporal events at the desired frequency resolution -> still nonlocal

Fourier methods



Hilbert spectrum of the LFP

Not so useful. . . .



Hilbert spectrum of LFP IMF modes



Focusing on IMF mode 6

Trace of tetrode CH1



Focusing on IMF mode 4

Trace of tetrode CH1

Negative frequency!



Tetrode CH1 modes

Original CH1 data



Hilbert spectrum of IMF modes 1-7



Mouse call



Hilbert spectrum of IMF mode 1



Spectrogram of mouse call



Conclusions

•Novel technique for analyzing non-stationary and
nonlinear time series

•Best suited for cases when signal time scales (and
energy?) are distinct from the noise time scales

•Best suited for situations where oscillations may
provide a physical description

•Technical improvements are necessary (but have
been developed over the last 5 years)


